玉米和大麦体外瘤胃发酵氢气、甲烷和挥发性脂肪酸产量差异研究Differences in Hydrogen,Methane and Volatile Fatty Acids Production between Corn and Barley in in Vitro Rumen Fermentation
朱威力;王荣;龙婷;石维宏;瞿吉;罗婵;郑琛;王敏;
摘要(Abstract):
本试验旨在研究玉米和大麦体外瘤胃发酵氢气、甲烷和挥发性脂肪酸产量的差异。以玉米和大麦为发酵底物,选用3只安装永久性瘤胃瘘管的湘东黑山羊作为瘤胃液供体动物,利用全自动体外模拟发酵系统进行48 h体外瘤胃发酵试验。结果表明:1)与玉米相比,大麦的粗蛋白质和中性洗涤纤维含量较高,而淀粉含量较低。2)与玉米相比,大麦的干物质降解率显著降低(P<0.05),产气速率、起始底物降解速率均显著升高(P<0.05);氢气的产气量、降解每克底物的产气量、潜在最大产气量、产气速率均显著升高(P<0.05);甲烷的产气速率显著升高(P<0.05)。3)与玉米相比,大麦的氨态氮浓度、乙丙比以及丁酸、异丁酸和戊酸浓度及比例均显著升高(P<0.05)。结果提示,大麦的前期底物降解速率显著高于玉米,促进更多氢气累积,有助于丁酸生成。
关键词(KeyWords): 体外瘤胃发酵;玉米;大麦;氢气;甲烷;挥发性脂肪酸
基金项目(Foundation): 国家科技计划项目(2016YFD050054,2018YFD0501800);; 国家自然科学基金项目(31860657,31561143009,31472133);; 湖南省重大专项(2017NK1020);; 中国科学院青年促进会项目(2016327);中国科学院特聘研究员项目(2018VBA0031)
作者(Author): 朱威力;王荣;龙婷;石维宏;瞿吉;罗婵;郑琛;王敏;
Email:
DOI:
参考文献(References):
- [1] POTTS S B,BOERMAN J P,LOCK A L,et al.Residual feed intake is repeatable for lactating Holstein dairy cows fed high and low starch diets[J]. Journal of Dairy Science,2015,98(7):4735-4747.
- [2] GOMEZ L M,POSADA S L,OLIVERA-ANGEL M.Starch in ruminant diets:a review[J].Revista Colombiana de Ciencias Pecuarias,2016,29(2):77-90.
- [3] MOHARRERY A,LARSEN M,WEISBJERG M R.Starch digestion in the rumen,small intestine,and hind gut of dairy cows-A meta-analysis[J]. Animal Feed Science and Technology,2014,192:1-14.
- [4]沈宜钊.日粮淀粉来源与有机酸预处理玉米对奶山羊瘤胃酸中毒的影响及机制[D].博士学位论文.扬州:扬州大学,2018.
- [5] NIKKHAH A. Barley grain for ruminants:a global treasure or tragedy[J]. Journal of Science and Biotechnology,2012,3(1):22.
- [6] HUMER E,ZEBELI Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing[J]. Animal Feed Science and Technology,2017,226:133-151.
- [7]姜豇.反刍动物常用精饲料淀粉降解动力学研究[D].硕士学位论文.长沙:湖南农业大学,2005.
- [8] WANG M,WANG R,XIE T Y,et al.Shifts in rumen fermentation and microbiota are associated with dissolved ruminal hydrogen concentrations in lactating dairy cows fed different types of carbohydrates[J].The Journal of Nutrition,2016,146(9):1714-1721.
- [9] MENKE K H,RAAB L,SALEWSKI A,et al.The Estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro[J]. Journal of Agricultural Science,1979,93(1):217-222.
- [10] WANG M,WANG R,YANG S,et al.Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production,ruminal fermentation and hydrogen balance using in vitro technique[J].Animal Science Journal,2016,87(2):224-232.
- [11] WANG M,JANSSEN P H,SUN X Z,et al.A mathematical model to describe in vitro kinetics of H2gas accumulation[J].Animal Feed Science and Technology,2013,184(1/2/3/4):1-16.
- [12] AOAC.Official methods of analysis[M]16th ed. Arlington,VA:Association of Official Analytical Chemists,1995.
- [13] VAN SOEST P J,ROBERTSON J B,LEWIS B A.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science,1991,74:3583-3597.
- [14] KARTCHNER R J,THEURER B.Comparison of hydrolysis methods used in feed,digesta,and fecal starch analysis[J].Journal of Agricultural and Food Chemistry,1981,29(1):8-11.
- [15] WEATHERBURN M W.Phenol-hypochlorite reaction for determination of ammonia[J].Analytical Chemistry,1967,39(8):971-974.
- [16] WANG M,TANG S X,TAN Z L. Modeling in vitro gas production kinetics:derivation of logistic-exponential(LE)equations and comparison of models[J].Animal Feed Science and Technology,2011,165(3/4):137-150.
- [17] WANG M,SUN X Z,TANG S X,et al.Deriving fractional rate of degradation of logistic-exponential(LE)model to evaluate early in vitro fermentation[J].Animal,2013,7(6):920-929.
- [18] HUHTANEN P,SVEINBJ?RNSSON J.Evaluation of methods for estimating starch digestibility and digestion kinetics in ruminants[J]. Animal Feed Science and Technology,2006,130(1/2):95-113.
- [19] KHAN M A,LEE H J,LEE W S,Ket al. Starch source evaluation in calf starter:Ⅱ.Ruminal parameters,rumen development,nutrient digestibilities,and nitrogen utilization in Holstein calves[J]. Journal of Dairy Science,2008,91(3):1140-1149.
- [20] LARSEN M,LUND P,WEISBJERG M R,et al. Digestion site of starch from cereals and legumes in lactating dairy cows[J].Animal Feed Science and Technology,2009,153(3/4):236-248.
- [21] NEWBOLD C J,LóPEZ S,NELSON N,et al.Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro[J].British Journal of Nutrition,2007,94(1):27-35.
- [22] HATEW B,CONE J W,PELLIKAAN W F,et al.Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle[J].Animal Feed Science and Technology,2015,202:20-31.
- [23] WANG R,SI H B,WANG M,et al. Effects of elemental magnesium and magnesium oxide on hydrogen,methane and volatile fatty acids production in in vitro rumen batch cultures[J]. Animal Feed Science and Technology,2019,252:74-82.
- [24] OFFNER A,BACH A,SAUVANT D.Quantitative review of in situ starch degradation in the rumen[J].Animal Feed Science and Technology,2003,106(1/2/3/4):81-93.
- [25] LANZAS C,FOX D G,PELL A N.Digestion kinetics of dried cereal grains[J]. Animal Feed Science and Technology,2007,136(3/4):265-280.
- [26] MCALLISTER T A,PHILLIPPE R C,RODE L M,et al.Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms[J]. Journal of Animal Science,1993,71(1):205-212.
- [27] HUNTINGTON G B.Starch utilization by ruminants:from basics to the bunk[J]. Journal of Animal Science,1997,75(3):852-867.
- [28] CZERKAWSKI J W,HARFOOT C G,BRECKENRIDGE G. The relationship between methane production and concentrations of hydrogen in the aqueous and gaseous phases during rumen fermentation in vitro[J].Journal of Applied Microbiology,1972,35(4):537-551.
- [29] HUNGATE R E. Hydrogen as an intermediate in the rumen fermentation[J]. Archiv für Mikrobiologie,1967,59(1):158-164.
- [30] QIAO J Y,TAN Z L,GUAN L L,et al.Effects of hydrogen in headspace and bicarbonate in media on rumen fermentation,methane production and methanogenic population using in vitro gas production techniques[J]. Animal Feed Science and Technology,2015,206:19-28.
- [31] MA Z Y,ZHANG X M,WANG M,et al. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows[J]. Journal of Dairy Science,2019,102(6):5566-5576.
- [32]吴世迪,熊宽,富俊才,等.大麦替代日粮中玉米对育肥羊瘤胃发酵的影响[J].中国畜牧杂志,2015,51(13):30-34.
- [33] LECHARTIER C,PEYRAUD J L. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion[J].Journal of Dairy Science,2011,94(5):2440-2454.
- [34] GIGER-REVERDIN S,RIGALMA K,DESNOYERS M,SAUVANT D,DUVAUS-PONTER C. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats:relationships between behavioral and physiological parameters and effect of between-animal variability[J]. Journal of Dairy Science,2014,97(7):4367-4378.
- [35] JANSSEN P H.Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics[J]. Animal Feed Science and Technology,2010,160(1/2):1-22.
- [36] CONE J W. Fermentation kinetics and production of volatile fatty acids and microbial protein by starchy feedstuffs[J].Animal Feed Science and Technology,2012,172(1/2):34-41.
- [37] WANG M,SUN X Z,JANSSEN P H,et al.Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures[J].Animal Feed Science and Technology,2014,194:1-11.
- [38] GETACHEW G,ROBINSON P H,DEPETERS E J,et al.Relationships between chemical composition,dry matter degradation and in vitro gas production of several ruminant feeds[J]. Animal Feed Science and Technology,2004,111(1/2/3/4):57-71.